WORST_CASE(?,O(n^1))
* Step 1: Ara WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict TRS:
            conv(0()) -> cons(nil(),0())
            conv(s(x)) -> cons(conv(half(s(x))),lastbit(s(x)))
            half(0()) -> 0()
            half(s(0())) -> 0()
            half(s(s(x))) -> s(half(x))
            lastbit(0()) -> 0()
            lastbit(s(0())) -> s(0())
            lastbit(s(s(x))) -> lastbit(x)
        - Signature:
            {conv/1,half/1,lastbit/1} / {0/0,cons/2,nil/0,s/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {conv,half,lastbit} and constructors {0,cons,nil,s}
    + Applied Processor:
        Ara {araHeuristics = Heuristics, minDegree = 1, maxDegree = 2, araTimeout = 3, araRuleShifting = Nothing}
    + Details:
        Signatures used:
        ----------------
          0 :: [] -(0)-> "A"(9)
          0 :: [] -(0)-> "A"(5)
          0 :: [] -(0)-> "A"(1)
          0 :: [] -(0)-> "A"(0)
          cons :: ["A"(0) x "A"(0)] -(0)-> "A"(0)
          conv :: ["A"(9)] -(1)-> "A"(0)
          half :: ["A"(5)] -(1)-> "A"(9)
          lastbit :: ["A"(1)] -(1)-> "A"(0)
          nil :: [] -(0)-> "A"(0)
          s :: ["A"(9)] -(9)-> "A"(9)
          s :: ["A"(5)] -(5)-> "A"(5)
          s :: ["A"(1)] -(1)-> "A"(1)
          s :: ["A"(0)] -(0)-> "A"(0)
        
        
        Cost-free Signatures used:
        --------------------------
        
        
        
        Base Constructor Signatures used:
        ---------------------------------
        
        

WORST_CASE(?,O(n^1))